STOCHASTIC SECTION MODULUS REQUIREMENT FOR CARBON FIBRE REINFORCED PLASTIC PULTRUDED BEAMS

Code: 7498644B8F0421  Price: 4,000   61 Pages     Chapter 1-5    6324 Views

ABSTRACT

Six Carbon Fibre Reinforced Plastic (CFRP) pultruded beam section from The Pultex® Pultrusion Design Manual Volume 4 – Revision 8 Copyright © 2004 by Creative Pultrusions Inc., were assumed to be simply supported doubly symmetric I-section, with uniformly distributed load of 3.5kN/m2 applied over the length of 3.050m each. A comparative analysis of section modulus effect under the load and resistance factor design (LRFD) and allowable stress design (ASD) was considered based on computer program using FORM5 and ABAQUS 6.10 CAE that was used to generate results for reliability and finite element analysis respectively. Safety indices generated for reliability analysis from FORM5 based on load and resistance factor design (LRFD) and allowable stress design (ASD) format by varying load ratio and section modulus was analyzed. The general conclusion from the results are that, the safety of all the beam section increased with increase in section modulus by average of 1.1% for both load and resistance factor design (LRFD) and allowable stress design (ASD) format. The implication of this is that, when the load and resistance factor design (LRFD) and allowable stress design (ASD) design format is employed, the reserved elastic moment of the carbon fibre reinforced plastic (CFRP) beams are fully utilized, with the possibility of the beam reaching its full elastic moment at higher loading, hence section modulus can be reduced, that would result in lower beam section. Also for finite element analysis (FEA) considered using ABAQUS 6.10 CAE in which the stresses, displacement, strain on the carbon fibre reinforced plastic (CFRP) pultruded beams obtained are analyzed and graphically presented and based on the design parameters, the deformation and the Von Mises stress distribution obtained indicates that, the field of high stress is only shown in Model 1 with 661.2N/mm2 which is minimal under the said load when compared to bending and tensile strength of 3300N/mm2 for carbon fibre reinforced plastic (CFRP).

CHAPTER ONE

1.0  INTRODUCTION

1.1 General

Structures are designed and constructed to supply sufficient capacity against vertical and lateral load demands with the purposes of providing life safety and preventing collapse. However, many examples of catastrophic results such as failure or damage of buildings, bridge piers, etc., are seen all over the world. These can be due to intentionally or unintentionally created deficiencies during service life and lack of control that needs to be provided both at the design and construction stages (Ümit, 2007). By definition, Fibre Reinforced Plastic (FRP) is a composite of two material groups: (1) reinforcing fibre which provides the strength; and (2) polymer resin matrix such as epoxy, to bind the reinforcements together (Nanni, 1999).

During the last two decades, Fibre Reinforced Polymer (FRP) composite materials have seen a steady increase in their applications for construction. They have been increasingly popular because of their advantages over conventional construction materials including a high strength-to-weight ratio, corrosion resistance leading to increased durability and lower maintenance costs, and their ability to be pultruded into various shapes whose mechanical properties can be custom-tailored for specific applications (Bank, 2006). However, significant barriers for wide-spread adoption still remain which include their high initial cost, the lack of understanding of their physical behaviour by practicing engineers, and the lack of a reliability based on Load and Resistance Factor Design (LRFD) standard governing their design (Ellingwood, 2003).

STOCHASTIC SECTION MODULUS REQUIREMENT FOR CARBON FIBRE REINFORCED PLASTIC PULTRUDED BEAMS

Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.

Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.

Material Information
  • ₦4,000.00 1 Price:
  • 61 2 No. of Pages:
  • 5 3 No. of Chapters:
  • No 4 Has Implementation:
FOR ENQUIRIES WE ARE AVAILABLE 24/7

Contact us on

DEPARTMENT
LAW