Powered by eProject Guide DESIGN OF AN AUTOMATIC BATTERY CHARGER | eProject Guide

DESIGN OF AN AUTOMATIC BATTERY CHARGER

Code: 3A6BCB143D0421  Price: 4,000   61 Pages     Chapter 1-5    6324 Views

DESIGN OF AN AUTOMATIC BATTERY CHARGER

CHAPTER ONE
1.1 Introduction
While most modern electrical appliances receive their power directly from the utility grid, a growing number of everyday devices require electrical power from batteries in order to achieve greater mobility and convenience. Rechargeable batteries store electricity from the grid for later use and can be conveniently recharged when their energy has been drained. Appliances that use rechargeable batteries include everything from low-power cell phones to high-power industrial forklifts. The sales volume of such products has increased dramatically in the past decade. Hundreds of millions of these products are sold annually to businesses and consumers, with close to a billion in use in the U.S. alone.

The system used to draw energy from the grid, store it in a battery, and release it to power a device is called a battery charger system. While designers of battery charger systems often maximize the energy efficiency of their devices to ensure long operation times between charging, they often ignore how much energy is consumed in the process of converting ac electricity from the utility grid into dc electricity stored in the battery. Significant energy savings are possible by reducing the conversion losses associated with charging batteries in battery-powered products. We can achieve these savings using technology that is readily available today and employed in existing products.

In this primer, we will describe today’s standard battery charger designs and then highlight several design strategies for improving their efficiency.

THE OBJECTIVE OF THE STUDY

The objective of this study is to construct an effective automatic battery charge for efficient and persistence power optimization.
And the review the development of battery chargers from its evolution. This project also sport light the problems associated with most battery charger and suggest possible ways of avoiding these problems.
After the construction process in complete, effective user guidelines are highlighted so as to enable users to be able to use the automatic battery charger conveniently.

DESIGN OF AN AUTOMATIC BATTERY CHARGER


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.

Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.

Material Information
  • ₦4,000.00 1 Price:
  • 61 2 No. of Pages:
  • 5 3 No. of Chapters:
  • No 4 Has Implementation:
FOR ENQUIRIES WE ARE AVAILABLE 24/7

Contact us on

DEPARTMENT
LAW