ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS

Code: C672F2DA680521  Price: 4,000   61 Pages     Chapter 1-5    6457 Views

ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS

 

ABSTRACT

New sources of energy should be found to relieve the high demand of energy. Even though heavy oil and bitumen are difficult to produce due to their high viscosity which can be reduced by heating, with increased oil price, the production of these heavy oils are seen viable thus the need for a model that would help make predictions for the future and also take into consideration areal and vertical sweep of hydrocarbons (3D simulator). The ability to be able to optimize the interaction data and decision making during the life cycle of the field is critical. As a result of a heterogeneity of reservoirs, numerical simulators are used to obtain consistent and significant solutions.

For this work, a three-dimensional numerical reservoir simulator is developed for an expansion drive with a high viscous oil. A transient state heat system by conduction with an internal heat source is considered. A temperature simulator is first developed then coupled with a viscosity correlation after which it is then coupled with a diffusivity equation for a single phase flow of an expansion drive reservoir. All the governing equations are discretized using finite difference technique; iterative linear solver with the aid of MATLAB code is used to solve the system of linear equations.

This work aims to look at the effect of temperature on pressure drop through viscosity. It is realized that an increase in the heat source introduced a rise in temperature which in turn decrease the viscosity across the system. The pressure across the system is seen to be sustained even though it is declining thus the pressure being maintained.

 

CHAPTER ONE

INTRODUCTION

1.1 General Introduction

Reservoirs act differently due to varying range of both rock and fluid properties and thus must be treated uniquely. During production, reservoirs are allowed to naturally produce their hydrocarbons until when production rates are mostly not economical viable then other support systems are used. Primary recovery is the natural stage of the reservoir to be able to produce without support thus depending on reservoir’s internal energy. There are different drive mechanisms known as a results of different energy sources. The drive mechanism of a reservoir is not known in the earlier life of the production but can be seen from production data with time. The knowledge about the reservoir’s drive mechanism can help improve reserves recovery and supervision during its middle and later life. The important drive mechanisms include: Rock and liquid expansion drive, solution gas/ depletion drive, Gas cap drive, Water drive, Combination drive and Gravity drainage drive.

 

 

ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.

Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.

Material Information
  • ₦4,000.00 1 Price:
  • 61 2 No. of Pages:
  • 5 3 No. of Chapters:
  • No 4 Has Implementation:
FOR ENQUIRIES WE ARE AVAILABLE 24/7

Contact us on

DEPARTMENT
LAW