The subjects of interest in this work were the production of biogas via anaerobic co-digestion of tannery fleshing and cow-dung; and the reduction of sulphide concentration by direct inclusion of sodium and calcium alginate. Comparison of the efficacy of various tannery beam house effluents as substrate diluents indicated that the soaking liquor was most favourable. Use of soaking liquor gave highest methane concentration of 11.8%v/v as against 8.8%v/v, 1.2%v/v, and 4.1%v/v when deliming liquor, liming liquor and a combination of the entire beam house liquors were used respectively. Effect of various fleshing to cow-dung ratio of 1:0, 1:0.5, 1:1 and 1:2 were investigated. The optimum was established to be ratio 1:2 as indicated by the highest methane concentration of 45%v/v as against 1.9%v/v, 5.1%v/v, 7.3%v/v for 1:0, 1:0.5 and 1:1 respectively. The ability of minute concentration of sodium and calcium alginates (0.01% wt/v) introduced from the beginning of the anaerobic digestion cycle to increase methane concentration and reduce hydrogen sulphide concentration was ascertained. The alginates acted as chelating ligands thereby boosting methane production and reducing sulphide concentration. Methane concentration was significantly boosted to 70.1%v/v and 63.8%v/v with the addition of sodium alginate and calcium alginate beads respectively, as against 45%v/v for a similar digestion sample without alginate. Generally, sodium alginate performed better than calcium alginate beads both of 0.01% wt/v. However, an increase in concentration of calcium alginate beads to 0.03% wt/v performed better than sodium alginate of 0.01% wt/v. In addition, inclusion of the alginates to the digestion system shortens the retention time for biogas production and hydrogen sulphide evolution. This work thus recommends soaking liquor as diluent in the anaerobic digestion of tannery fleshing, use of tannery fleshing and cow-dung in the ratio of 1:2 for anaerobic co-digestion and the use of sodium and calcium alginates (0.01% wt/v) acting as chelating ligands to remove hydrogen sulphide and boost methane production above 20%.
CHAPTER 1
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.