CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND TO THE STUDY
The telecommunications industry generates and stores a tremendous amount of data (Han et al, 2002). These data include call detail data, which describes the calls that traverse the telecommunication networks, network data, which describes the state of the hardware and software components in the network, and customer data, which describes the telecommunication customers (Roset et al, 1999). The amount of data is so great that manual analysis of the data is difficult, if not impossible. The need to handle such large volumes of data led to the development of knowledge-based expert systems. These automated systems performed important functions such as identifying fraudulent phone calls and identifying network faults. The problem with this approach is that it is time consuming to obtain the knowledge from human experts (the “knowledge acquisition bottleneck”) and, in many cases, the experts do not have the requisite knowledge. The advent of data mining technology promised solutions to these problems and for this reason the telecommunications industry was an early adopter of data mining technology (Roset et al, 1999).
Telecommunication data pose several interesting issues for data mining. The first concerns scale, since telecommunication databases may contain billions of records and are amongst the largest in the world. A second issue is that the raw data is often not suitable for data mining. For example, both call detail and network data are time-series data that represent individual events. Before this data can be effectively mined, useful “summary” features must be identified and then the data must be summarized using these features. Because many data mining applications in the telecommunications industry involve predicting very rare events, such as the failure of a network element or an instance of telephone fraud, rarity is another issue that must be dealt with. The fourth and final data mining issue concerns real-time performance because many data mining applications, such as fraud detection, require that any learned model/rules be applied in real-time (Ezawa & Norton, 1995). Several techniques has also been applied is tackling all these issues in telecommunication companies.
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.