CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND TO THE STUDY
The telecommunications industry generates and stores a tremendous amount of data (Han et al, 2002). These data include call detail data, which describAnalysis Of Data Mining Techniques Of Telecommunication Companies In Nigeria: A Case Study Of Mtn Nigeriaes the calls that traverse the telecommunication networks, network data, which describes the state of the hardware and software components in the network, and customer data, which describes the telecommunication customers (Roset et al, 1999). The amount of data is so great that manual analysis of the data is difficult, if not impossible. The need to handle such large volumes of data led to the development of knowledge-based expert systems. These automated systems performed important functions such as identifying fraudulent phone calls and identifying network faults. The problem with this approach is that it is time consuming to obtain the knowledge from human experts (the “knowledge acquisition bottleneck”) and, in many cases, the experts do not have the requisite knowledge. The advent of data mining technology promised solutions to these problems and for this reason the telecommunications industry was an early adopter of data mining technology (Roset et al, 1999).
Telecommunication data pose several interesting issues for data mining. The first concerns scale, since telecommunication databases may contain billions of records and are amongst the largest in the world. A second issue is that the raw data is often not suitable for data mining. For example, both call detail and network data are time-series data that represent individual events. Before this data can be effectively mined, useful “summary” features must be identified and then the data must be summarized using these features. Because many data mining applications in the telecommunications industry involve predicting very rare events, such as the failure of a network element or an instance of telephone fraud, rarity is another issue that must be dealt with. The fourth and final data mining issue concerns real-time performance because many data mining applications, such as fraud detection, require that any learned model/rules be applied in real-time (Ezawa & Norton, 1995). Several techniques has also been applied is tackling all these issues in telecommunication companies.
Telecommunication networks are extremely complex configurations of equipment, comprised of thousands of interconnected components. Each network element is capable of generating error and status messages, which leads to a tremendous amount of network data. This data must be stored and analyzed in order to support network management functions, such as fault isolation. This data will minimally include a timestamp, a string that uniquely identifies the hardware or software component generating the message and a code that explains why the message is being generated. For example, such a message might indicate that “controller 7 experienced a loss of power for 30 seconds starting at 10:03 pm on Monday, May 12.”
Due to the enormous number of network messages generated, technicians cannot possibly handle every message. For this reason expert systems have been developed to automatically analyze these messages and take appropriate action, only involving a technician when a problem cannot be automatically resolved (Weiss, Ros & Singhal, 1998). This study is focused on MTN Nigeria.
MTN Nigeria is part of the MTN Group, Africa’s leading cellular telecommunications company. On May 16, 2001, MTN became the first GSM network to make a call following the globally lauded Nigerian GSM auction conducted by the Nigerian Communications Commission earlier in the year. Thereafter the company launched full commercial operations beginning with Lagos, Abuja and Port Harcourt. MTN paid $285m for one of four GSM licenses in Nigeria in January 2001. To date, in excess of US$1.8 billion has been invested building mobile telecommunications infrastructure in Nigeria.
Since launch in August 2001, MTN has steadily deployed its services across Nigeria. It now provides services in 223 cities and towns, more than 10,000 villages and communities and a growing number of highways across the country, spanning the 36 states of the Nigeria and the Federal Capital Territory, Abuja. Many of these villages and communities are being connected to the world of telecommunications for the first time ever.
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.