Powered by eProject Guide MODELING, ANALYSIS AND SIMULATION OF A DC GRID SINGLE ENDED PRIMARY INDUCTANCE CONVERTER FOR DC LOAD | eProject Guide

MODELING, ANALYSIS AND SIMULATION OF A DC GRID SINGLE ENDED PRIMARY INDUCTANCE CONVERTER FOR DC LOAD

Code: 3BBEE173240421  Price: 4,000   61 Pages     Chapter 1-5    6319 Views

 MODELING, ANALYSIS AND SIMULATION OF A DC GRID SINGLE ENDED PRIMARY INDUCTANCE CONVERTER FOR DC LOAD ( ELECTRICAL AND ELECTRONIC PROJECT TOPIC)

 

ABSTRACT

This research studied a circuit topology of a solar based Single Ended Primary Inductance Converter (SEPIC) system and a battery furnishing a permanent magnet dc motor with current via a dc grid. The complete model equations of the entire system were derived. Harmonic balance technique was used to determine the converter steady state and ripple quantities. Analyses investigating the relationship of the converter state variables as a function of its duty ratio were developed. Results show that operating the converter between 0 – 0.4 duty ratio give best system performances. On the other hand, results show that operating the converter above this range limits the converter optimal performance. The consequence of operating the system with duty ratios above 0.4 is that the ripples in the voltage and current waveforms increase. More so, results also show that for a steady state current of 12 A, for the permanent magnet dc motor in a period of low solar insolation, operating a Bi-directional converter at specific values of duty ratio causes the battery to discharge much faster compare to operating at duty ratio of 0.78. Two solar insolation data for Zaria (Lat 11.0670N Long 7.70E) was obtained from National Aeronautics and Space Administration (NASA) for a period of January to December 2013 and another ground level captured from Electrical & Computer Engineering Department using the data acquisition module (model TQ 140876-002) from August 17 to September 24, 2014. These insolation data from both stations were used to validate the efficiency of the proposed design. The targeted load demand of approximately 2441.43W was achieved. This represents 97.66 % of the load demand designed for in this research. The designed solar energy system contributed 70% of the power to the load, while the battery supplied 30% of the load demand power. An effective hybrid storage system based on solar and battery was achieved, which met the designed objective of this research.

 MODELING, ANALYSIS AND SIMULATION OF A DC GRID SINGLE ENDED PRIMARY INDUCTANCE CONVERTER FOR DC LOAD ( ELECTRICAL AND ELECTRONIC PROJECT TOPIC)


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.

Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.

Material Information
  • ₦4,000.00 1 Price:
  • 61 2 No. of Pages:
  • 5 3 No. of Chapters:
  • No 4 Has Implementation:
FOR ENQUIRIES WE ARE AVAILABLE 24/7

Contact us on

DEPARTMENT
LAW