Powered by eProject Guide DEVELOPMENT OF AN IMPROVED APPROACH TO BIOMETRIC FINGERPRINT IMAGE COMPRESSION USING COIFLET SIGNAL TRANSFORMATION ALGORITHM | eProject Guide

DEVELOPMENT OF AN IMPROVED APPROACH TO BIOMETRIC FINGERPRINT IMAGE COMPRESSION USING COIFLET SIGNAL TRANSFORMATION ALGORITHM

Code: E488BDD6B70421  Price: 4,000   61 Pages     Chapter 1-5    6535 Views

 DEVELOPMENT OF AN IMPROVED APPROACH TO BIOMETRIC FINGERPRINT IMAGE COMPRESSION USING COIFLET SIGNAL TRANSFORMATION ALGORITHM ( ELECTRICAL AND ELECTRONIC PROJECT TOPIC)

ABSTRACT

Biometric fingerprint images require substantial storage, transmission and computation costs, thus their compression is advantageous to reduce these requirements. This research work presents a novel approach to biometric fingerprint image compression by the innovative application of non-uniform quantization scheme in combination with level-dependent threshold strategy applied to wavelet transformation as opposed to the widely used uniform quantization scheme. Comparative analysis of Coiflet wavelets implemented with level dependent thresholds and Daubechies wavelets were conducted on the basis of percentage retained energy, RE (%). The RE (%) values for Coiflet wavelet ranged from 99.32% to 99.69% as opposed to the values for Daubechies wavelet which ranged from 98.45% to 99.15%. These results revealed that the Coiflet wavelet bases performed better than the Daubechies wavelet. Hence, the choice of Coiflet wavelet for image transformation in the proposed compression algorithm was justified. The performance analysis of uniform and non-uniform scalar quantization schemes for biometric fingerprint image compression was conducted. The non-uniform quantization method based on Lloyd-Max approach performed better than the uniform quantization method used in the existing fingerprint compression standards. The Signal-to-Quantization Noise Ratio (SQNR) values for non-uniform quantization increased from 19.2977 dB for 3 bit per pixel (bpp) to 44.6083 dB for 7 bpp whereas for the same range (3 bpp to 7 bpp) for uniform quantization, SQNR values increased from 17.0903 dB to 40.1349 dB. Therefore, non-uniform quantization based on Lloyd-Max approach was employed for this compression algorithm. The implementation of the proposed biometric fingerprint image compression algorithm involved three stages, namely: the transformation of biometric fingerprint image; non-uniform quantization of transformed image and the entropy coding which is the final stage. In order to determine the overall performance of the algorithm, Peak Signal-to-Noise Ratio (PSNR) and Compression Ratio (CR) were used as performance metrics. PSNR was used as a measure of the resultant image quality after compression and the Compression Ratio was used as a measure of the degree of compression achievable. A trade-off was made between the achievable compression ratio and the realizable image quality which is a function of the achievable PSNR in the overall compression process. The overall performance of the proposed compression algorithm achieved an improvement in terms of compression ratio of 20:1 over the existing compression standard for biometric applications which have a compression ratio limit of 15:1. The improvement was largely due to the novel approach employed in this research work as stated above.

 DEVELOPMENT OF AN IMPROVED APPROACH TO BIOMETRIC FINGERPRINT IMAGE COMPRESSION USING COIFLET SIGNAL TRANSFORMATION ALGORITHM ( ELECTRICAL AND ELECTRONIC PROJECT TOPIC)


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.

Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.

Material Information
  • ₦4,000.00 1 Price:
  • 61 2 No. of Pages:
  • 5 3 No. of Chapters:
  • No 4 Has Implementation:
FOR ENQUIRIES WE ARE AVAILABLE 24/7

Contact us on

DEPARTMENT
LAW