ABSTRACT
Enhancement of the friction-reducing properties of degraded 20W-50 engine oil by blending with neem and palm kernel oils respectively for application in cold upset-forging of aluminium alloys has been investigated using the ring compression test procedure. Three sets of blends of each of the vegetable oils with the degraded engine oil in the ratios 40:60, 50:50 and 60:40, the engine oil (unused and degraded) and the individual vegetable oils were investigated for friction reduction. Based on the modified empirical formula for friction coefficient determination under the various lubrication conditions, the average values of friction coefficient, µ obtained under the investigated unused engine oil, degraded engine oil, pure neem oil, 40% neem oil, 50% neem oil, 60% neem oil, pure palm kernel oil, 40% palm kernel oil, 50% palm kernel oil and 40% palm kernel oil oils were 0.073, 0.092, 0.068, 0.068, 0.062, 0.060, 0.057, 0.080, 0.058 and 0.057 respectively. Close correlations were observed betweencurves of these friction values andthe standard calibration curves proposed by Male and Cockroft. On comparative basis with degraded oil lubrication condition with average friction coefficient of 0.092, appreciable reduction in friction values were obtained. The lowest average was obtained under 60% palm kernel oil mixed with degraded engine oil. This is attributable to increased viscosity and fatty acid quantity/quality of the investigated vegetable oil. However, based on curves of plot of coefficient of friction against percentage reduction in height, 40% and 50% neem oil in degraded oil could be adjudged the best blend ratios as their coefficients of friction fall with increasing deformation, whereas most of the blends of palm kernel considered in this work demonstrated unstable trends. Best results for neem oil blends with degraded oil could be attributed to the favorable physicochemical properties of the parent vegetable oil.
CHAPTER ONE
1.0 INTRODUCTION
1.1 Preamble
Several countries in the world have put in place policies and plans to manage the disposal of degraded oil to protect their environment. Unfortunately the appropriate management of degraded oil is a common problem for many African countries, including Nigeria, where much of the wastes have negative environmental and human health risks because of inadequate systems for collection, storage, recycling, disposal etc. (Bamiro and Osibanjo, 2004).
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.