ABSTRACT
The antihelminthic activity of methanolic extracts of leaf, stembark and root of Azadirachtaindica were evaluated in vitro againstHaemonchuscontortus larvae. Phytochemical screening conducted on the extracts of all the plant parts revealed the presence of carbohydrates, cardiac glycoside, saponins, flavonoids, tannins and alkaloids, leaf had steroids, while stembark and root had triterpenes. The quantitative estimation of the phytochemical constituents revealed a high percentage in flavonoids followed by alkaloids and tannins with least quantitative percentages insaponins: 20.21, 27.50, 20.95; 5.25, 5.48, 5.48; 4.95, 4.93, 4.15 and 0.75, 0.68, 0.67respectively. Eggs of H.contortus were cultured in culture plates maintained at 27°C in an incubator. The infective third stage larvae (L3) were recovered from 7-9 day old sterilefaecal cultures. The larvae harvested were concentrated at 1000 rpm for 15 minutes, 0.1 ml of the larvae containing 120 L3 were put into wells of microtitre plate and concentrations of each of the extracts (leaf, stembark and root) at 0.1mg/ml, 1.0mg/ml, 10.0mg/ml, 100mg/ml, negative control (water) and positive control (Levamisole) were added to each of the wells with six replication. After addition of the treatments, it was viewed under the microscope once in 6 hours for a period of 48 hours and the number of mortality recorded. The lethal concentration (LC50/ EC) value for the leafis 12.30mgml 1,12.58mgml-1 for the stem bark and 15.84mgml-1 for the root extract. Mortalities of the parasites increased with increase in the concentration and with the time of exposure. At the peak time of exposure (48 hours) and at the highest concentration of 100mgml-l, mortalities were higher than those of the least time of exposure (6 hours) and with the lowest concentration of 0.1mgml-1. The data showed highly significant differences between the plant parts, time of exposure, concentration of the extracts, the time of exposure and concentration and between the plant parts and concentration (p=0.001). Although, mortality of the parasites increased with increase in time, there were no significant differences between the plant parts and the time of exposure (p=0.92) and between the plant parts, time of exposure and concentration (p=0.99).Mortalities recorded were high in the positive control wells with increase in mortality as the time of exposure increased but in the negative control wells, mortalities were not recorded. The study concludes that mortalities recorded were due to the effects of the extracts on the parasites. Validation of the efficacy of the extracts of this plant is suggested to determine the effects of natural or experimental haemonchosis in ruminants.
Introduction
Azadirachta indica,commonly known as neem in English and Dogonyaro in Hausa,is an evergreentree in the Mahogany family Meliaceae. It is native to India, Pakistan and Burma, growing in tropical and semi-tropical regions (Balakrishnan et al., 2007).
It is the most versatile, multifarious tree of the tropics with immense potential growing to about 25m in height with semi-straight to straight trunk, 3m in girth and spreading branches forming a broad crown (Kumar and Gupta,2002).
It possesses useful non-wood products (leaves, bark, flowers, fruits, seed, gum, oil and neem cake) than any other tree species. These non-wood products are known to have antidermatic, antifeedent, antifungal, anti-inflammatory antipyorrhoeic, antiscabic, cardiac, diuretic, insecticidal, larvicidal, nematocidal, spermicidal and other biological activities (Brahmachari,2004). The wider application and activities of neem have made it a green treasure (Khanna, 1992,Suri and Mehrotra 1994).
The tree has adaptability to a wide range of climatic, topographic and edaphic factors. It thrives well in dry, stony shallow soils and even on hard calcareous soils or clay pan at a shallow depth (Koul et al.,1990,Schmutterer, 1990).
Neem tree requires little water and plenty of sunlight (Anonymous,2006, Sateesh,1998). The tree grows naturally in areas where the rainfall is in the range of 450 to 1200 mm.However, it has been introduced successfully even in areas where the rainfall is as low as 150 to 250 mm. It grows on altitudes up to 1500 m (Chari, 1996, Jattan et al., 1995, Tewari, 1992).
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.